AFRL-IF-RS-TR-2000-90
Final Technical Report
June 2000

LINQUISTIC ASSISTANT FOR DOMAIN ANALYSIS

(LIDA)

CoGenTex, Inc.

Tanya Korelsky, Benoit Lavoie, and Scott Overmyer

- APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

20000724 045

Redad QUALITY INEPE

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2000-90 has been reviewed and is approved for publication.

APPROVED: | o
Kﬁvf“ﬁ g& ﬁJﬁ/'"“

\
JAMES ¥. REILLY S
Project Engineer

FOR THE DIRECTOR: /z{ﬂ@ [):.é

NORTHRUP FOWLER, Technical Advisor
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704.0188

rmation is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gatherig and maintaining the data needed, and complating and reviewing
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, tc Washington Headquarters Sesvices, Directorate for Information

Public reporting burden for this collection of info
6
ighway, Suite 1204, Arlington, VA 22202-43012, and 1o the Difice of Management and Budget, Paperwork Reduction Project {0704-0184), Washington, OC 20503

the coll of en
Operations and Reparts, 1215 Jefferson Davis Hi

1. AGENCY USE ONLY (Zeave blank) 2. REPORT DATE 3. REPORT 1YPE AND DATES COVERED
JUNE 2000 Final May 97 - Nov 99
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
LINQUISTIC ASSISTANT FOR DOMAIN ANALYSIS (LIDA) C - F30602-97-C-0088
PE - 62702F
PR - 5581
6. AUTHOR(S) TA - 27
Tanya Korelsky, Benoit Lavoie, and Scott Overmyer WU -02

8. PERFORMING ORGARIZATIONR

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
REPORT NUMBER

CoGenTex, Inc.
840 Hanshaw Road
Ithaca NYY 14850 N/A

10. SPONSORING/MONITORING
AGENCY REPORT RUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/IFTB

525 Brooks Road
Rome NY 13441-4505 AFRL-TF-RS-TR-2000-90

11. SUPPLEMENTARY NOTES
Air Force Research Laboratory Project Engineer: James F. Reilly/IFTB/(315) 330-3333

12b. DISTRIBUTION COOE

12a. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. ABSTRACT /Maximum 200 words)
LIDA (Linguistic Assistant for Domain Analysis) helps analysts to develop object-oriented models of a domain, using a

subset of UML. In order to develop such models, the requirements analyst or knowledge engineer often needs to analyze
large volumes of text from "legacy documents " - these might include user manuals of legacy systems, company policies,
use cases, or transcripts of interviews with domain experts. ‘LIDA facilitates this analysis by compiling a list of the words
and multi-word terms in a document, and providing a graphical interface for the user to mark them as corresponding to
elements of a model. It also lets the user validate models as they are created, through integration with CoGenTex's
ModelExplainer tool, which generates textual descriptions of a model.

15 NUMBER OF PAGES

14. SUBJECT TERMS
52

Object Oriented Domain Models

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19, SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE QF ABSTRACT ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 238.18
Besigned using Perform Pra, WHS/DIGR, Oct 84

Table of Contents

TaDIE OF CONTENLS. ceevveererrrerserieesesiessersrrrrsrsriressseseseeeraesessnsasssannass

[od)

Table Of FIgUIES....cccvireevrenreenieenrennienintisicresse e senneans il

T OAUCTION «.veteeirenseererensererssesenserrsnnsorasessesssasssessnssones 1

LIDA: A Linguistic Assistant for Domain Analysis 2

LIDA System ArchiteCturecoceereiirinnriiieesninieesisssnseenas 3

LIDA Text Analyzing Environment........cccveeenienreeiiecunnns

FUNCHONALILYoveereerrerrerietensieseesiestesiesstestesbesaneseesessannnassens

Main Interface COMPONENtS.....ccucrveervunierivreecsuninsrnenanes

LIDA Model Editing Environment........ccooveeereeceniuennenne

Functionality....coccerererennensecninsiensesienneisiinnneesisieesseensessessssnses

Main Interface COMPONENLS.....eovverrirrviiriviinnreesnenseesnene

Related ReSEArch ..oevevveneeeeieeuiirereeersesimreiieeerensnenseenesses

W 0 N N e v W Rk

Using LIDA to Assist Class Identification, Refinement and Validation.

The Methodology e s 8

Using LIDA to Explain and Assist in Validating an Existing Class Model . A

R I ICES o eivvvereieierrenseeereesasssesersssssesersnsssesssnsssassessssnssessasaes 35

Appendix A - Sample Tutorial Materials.........cooeevcrrevcnnns 37

Figure 1
Figure 2
Figure 3

List of Figures
LIDA’s Overall System Architecture

LIDA’s Text Analyzing Environment Interface
LIDA’s Model Editing Environment Interface

ii

AN W

Table of Figures for Part 1

Figure 1. LIDA Class Identification & Modeling Process 10
Figure 2 LIDA Main SCIEENcovviiiiriiiiieiriintiisriseessnssesssescsssencesscosmsssssssssseamessssesmenses s nre 11
Figure 3. Load Text ... Dialog BOX.....cccconvvrnveninnienvennas 12
Figure 4. LIDA Main Screen with Text File Loaded 12
Figure 5. Sorted Nouns in Order of OCCurrenceeeevreenee e 13
Figure 6. ConteXt WINdOW ...cc.ccevererieerieriiniiiinieiniiiiiieessessnsssessesssssssesssssnssmasssssmsessesonsnsasss sesess 14
Figure 7. LIDA with Candidate Classes Markedcceueu..... 14
Figure 8. Context for "address”ccocvecrervinecrcreivnninnnns 15
Figure 9. "Address" Marked as an Attribute.......coccoivereereeennens 16
Figure 10. Adjectives in Descending Order.......ccccvvvreemrunens 17
Figure 11. Verbs in Descending Ordercccocivneiniiinnnennen .18
Figure 12. Classes. Attributes and Operations Marked 19
Figure 13. Using Context to Examine Verb-Noun Collocation 19
Figure 14. Using a Phrase as a Class.cccovvverureriseeseenceesenns 20
Figure 15. Initial LIDA Modeler Window..........ccceueuee .21
Figure 16. Attribute BOX oot 22
Figure 17. Attribute Editing Dialog Box ***** ... 22
Figure 18. Operation Section of Class Symbolcccuvueeneene .23
Figure 19. Customer Class with Attributes and Operations........ 23
Figure 20. Adding a New Attribute. Not in the Base Text 24
Figure 21. Class Option Menu eeeeiereerereeaseeeraeesesenassasennnne 25
Figure 22. Association Editing Dialog BoXcceccuue. 25
Figure 23. Association between 2 Classes.......c.coeeruiersennseessceennes 26
Figure 24. Association with Correct Multiplicity Values.......ccoceererrecercnreenn. 27

iii

Figure 25. Text Description of the Customer Classccoiviieinenniiniininiiii, 27

Figure 26. Visio Screen With ITP Model......ccccevvieriiiniiniiniiiiieiiieeiiiiesicesicsecsnscsnnene 29
Figure 27. Visio EXport Warningcceceeeinnieienieinnineinnisiniinssssessess s i sisnescaes 29
Figure 28. Exportation Configuration Dialog BOX.....c.ceceverninnennciiniiiniiiiiiie, 30
Figure 29. Naming the Exported Modelccouiimimmeiiniiniinniieinncnenensccnsesiseine 30
Figure 30. Load Model... Dialog BOX....cocvuieietivinriiiniiieiniinsieceteiisestscteeeininsnienes 31
Figure 31. Loaded Model EIEMENLS ..cccoveviveciriiiiiiimninniiniissinnsiesis s sesesesssisisssssssssns 32
Figure 32. Imported Model with "Class" Displayedccvevuvermrmnnnininrcinnennienineinnisnnnin. 33
Figure 33. LIDA Text Description of Employee_Course Classccoovaverennninnssscscsecsnennnns 34

iv

Introduction

Object-oriented analysis and design grows more popular every year. Books on the subject
abound [3-7]. Traditional systems analysts and developers are working hard to gain the
knowledge and expertise required to take advantage of this relatively new technology. Despite
the advantages that object technology can provide to the software development community and
its customers, the fundamental problems associated with identifying objects, their attributes, and
methods remain, and are largely manual processes driven by heuristics that analysts acquire
through experience. The primary tool for object identification and refinement is pencil and
paper, with the results being transferred to CASE tools after the analysis is largely completed.
There are some software tools associated with some methods of object identification and
refinement, such as the CRC card approach [1], however, the CRC card approach is labor
intensive, and difficult for an individual analyst to use.

Very often, an analyst is given a text document that describes the environment for which an
information system is to be developed. This document might include business processes, user
tasks, information about existing systems, and so forth. Information about system requirements
and proposed system use appears in many forms, from rambling discourse on the operational
concept of a proposed system, to loosely organized text descriptions of the business environment
and the user's tasks, to highly structured step-by-step procedure descriptions. It is the job of the
requirements analyst, regardless of development methodology, to understand, develop, and
document this information in a form that can be analyzed by developers, and translated into a
software design, and subsequently into code. Traditionally, systems analysts have developed the
requirements and modeled them using notations such as process models (e.g., data flow
diagrams), data models (e.g., entity-relationship diagrams), flow charts, and plain text. For some
time, task descriptions in the form of scenarios have also been employed on traditional analysis
efforts as well.

In response to these challenges, the object-oriented community offers the Use Case, and its
associated notations, or some variant of that idea. For example, in the Unified Modeling
Language (UML), the notations offered are Use Case texts, Use Case Diagrams, and Activity
Diagrams [2]. The widespread use of Use Cases as a basis for object-oriented analysis is
apparent both in academic literature and in industrial practice on object-oriented development
projects. '

Still, the process for developing objects from Use Cases and other descriptions is largely manual,
and difficult. While a number of methods exist for Use Case development and specification,
very few tools exist to assist analysts in making the transition from text descriptions, use cases,
or scenarios, to other notations for object-oriented analysis, such as class diagrams and activity
diagrams. Without a methodology and a tool to assist the analyst, it is often very difficult to
identify classes, their attributes and methods, and their relationship to other classes in the
problem domain. ‘

This Final Report describes LIDA, a prototype tool built to provide linguistic assistance in the
model development process.

In the following sections, we first give an overview of LIDA’s functionality and present its
technical design and the functionality of its components. The following section provides a
comparison of the LIDA functionality with other research prototypes. The last section of the
report presents a tutorial for LIDA produced in collaboration with Professor Scott Overmyer of
Drexel University, who served as a technical consultant on the project.

LIDA: A Linguistic Assistant for Domain Analysis

LIDA (LInguistic Assistant for Domain Analysis) helps analysts to develop object-oriented
models of a domain, using a subset of UML. In order to develop such models, the requirements
analyst or knowledge engineer often needs to analyze large volumes of text from “legacy
documents”—these might include user manuals of legacy systems, company policies, use cases,
or transcripts of interviews with domain experts. LIDA facilitates this analysis by compiling a
list of the words and multi-word terms in a document, and providing a graphical interface for the
user to mark them as corresponding to elements of a model. It also lets the user validate models
as they are created, through integration with CoGenTex’s ModelExplainer tool, which generates
textual descriptions of a model.

The LIDA prototype has the following features:

e State-of-the-art linguistic processing is used to group different forms of the same base word
together to determine part of speech (noun, verb, adjective) and to detect multi-word terms.

o The full text, word lists, and evolving UML model are displayed in parallel, letting the user
compare different views.

e Words and multi-word terms can be assigned a type in the model (Class, Attribute, Role,
etc.) with the click of a button. The corresponding strings are color-coded in the text display
and graphically displayed in the Modeler window.

e Words and multi-word terms can be sorted alphabetically: by frequency, by part of speech, or
by assigned type.

o A context view displays only those sentences containing a chosen word or group of words.

e Completed models can be exported to a visual modelling tool Visio™.

LIDA System Architecture

LIDA’s system architecture is shown in Figure 1.

Model C;:'f CASE
Converter, [M Tool
LIDA " Medek, d

—_— Text Model

Analyzing Editing LIDA Model CASE CASE
Tont Environment [| Environment [Model) Converter, > Tool #» Tool,
File Model;
si &
Domain LIDA User CASE Teod
Expert Users

Figure 1: LIDA’s Overall System Architecture

LIDA consists of two main components: a Text Analyzing Environment and a Model Editing
Environment.

The Text Analyzing Environment offers LIDA’s users the functionality needed for analyzing the
lexical content of text files that domain experts may have written for specific domains and assists
them in the process of identifying and marking the lexical items corresponding to candidate
model elements. Model elements marked in the Text Analyzing Environment propagate to the
Model Edltmg Environment where they can be assembled in a class model. While building the
model using the Model Editing Environment, textual context of the model elements is directly
accessible, and the addition of new elements to the model or the removal of elements from the
model directly affect the marking of the text in the Text Analyzing Environment.

A model developed in LIDA can be saved as a file using LIDA-specific files. LIDA models can
either be reloaded in LIDA or exported to a modeling tool for further model refinement. When
loaded in LIDA, LIDA models can be applied either to the texts that were originally used for the
development of the model or to different texts. The lexical content of a text after loading a model
is marked following the information found in the loaded model.

Export of LIDA models to modeling tools and import of models into LIDA is made possible by
using converters customized for these modelin w% tools. The current implementation of LIDA

supports export to and import from the Visio™ Modeling Tool where the model converter is
developed using Visio API.

The following sections describe in more detail the components of the LIDA system architecture.

LIDA Text Analyzing Environment

The Text Analyzing Environment illustrated in Figure 2 provides LIDA’s central functionality.
This section describes the functional features of the Text Analyzing Environment and the
subcomponents of its interface.

o pouns. - adsewes Cverss C a0 I [owe: <]
| bwoe form Jros| | wpe d _ The owner of & is the I tesponsidle for
. [workspace N 45 Class I aeintaining that .
- frame v owasvce || SN |3y anes co the M (scs NN, ics
. Jinformation N 39 : _E.._' context elements, its
emma N 38 - HEN) should only be done by the cwmer (or
; eloment N X N Unmark I someone acting in his or hex
~ [form N 32] - ~ |behelt). Currently, this restriction is not
.. jbution N 30 3| i Stopword l entorced by Zmas.
1. Jparent N 28 Role
- |porson N 28 Class Content I Click on the word "Owner” to bring up e form for
~Jeontracior N 27 Role « . ciicx
click N 25 . :‘E] on the 0f the owner to ceuse information]
. |subgoal N 23 Role o i about thet IR co be 92|
i - - displayed.
iphraed - i n]lowe
- Inforsation Form
Clicking on the SN of « MM eppescing in the
"Owner” field or
"Contzactors™ field on the Details page ceuses a
- - fors to sppesr with
- ~ on sbout that [EEEN. A MMM hes three
‘moseletemant - - [pos] n | twe :J typas of information
contractor 27 Role apsociated with hinsmer: (1) A . (2) A
“ereate 14 Operation description, and {3) A
edit 11 Operation 1 | (enail address or wed page). To HIME eny of these
goat 56 Class 1 [fields, just click on the
name 3 Atridute || | of the tiedd.
- .[node 114 Class
. {owner 17 Role
* |parent 28 Role < [serect IR rors]

Figure 2: LIDA’s Text Analyzing Environment Interface

Functionality

The main functional features of the Text Analyzing Environment include:
¢ Reading text from file (RTF or ASCII).
e Assigning part-of-speech to words using the MXPOST part-of-speech tagger, a software
tool developed at the University of Pennsylvania and re-implemented in Java during the
LIDA project.
¢ Retrieving base forms of words, counting word occurrences.

e Finding multi-word phrases for a given head word.

¢ Finding user-supplied multi-word phrasés.

e Allowing the user to mark a word or a phrase as a candidate model element; all the
occurrences of the marked word or phrase are highlighted in the text in a color associated
with a model element type.

¢ Retrieving the textual context of marked words.

Main Interface Components
The main interface components of the Text Analyzing Environment are the following:
e Menus, which display options for opening text files.

e Text display, which displays the currently analyzed text.

¢ Base form table with part of speech filter buttons (Nouns, Verbs, Adjectives, All), which lists
the lexical items contained in the text ordered by part-of-speech.

e Marking buttons (Class, Attribute, Operation, Role), which allow the user to mark terms
appearing in the text as candidate model elements of different types (class, attribute, etc.).

e Unmark button, which allows the user to unmark previously marked terms.
e Context display, which displays all the textual contexts in which a given term appears.

e Model element table, which lists the terms marked as candidate model elements.
LIDA Model Editing Environment

The Model Editing Environment (or Modeler), illustrated in Figure 3, offers the functionality
needed to build a model from the candidate model elements marked in LIDA’s Text Analyzing
Environment. It also displays the textual information (the textual context or textual description of
a model element) from the Text Analyzing Environment, which is useful in the process of model
building. This section describes the main functional features of the Model Editing Environment
and the subcomponents of its interface.

E“,Mudclm 043 M=l

CFlIR o View - L F © ' Help

Model: registar

-l Classes B
i (@ course

£ @ employee . @ g

. i @ professor -

] ; @A " ol Riogentia
G @person =

= Attrihutes
L-¢) employee-1g
Q) kK [F——
B grade i
L. @ name Etudent
L-Qno student id
Lo Qsdlay

o

Instructs 0.*

. is instructed by

study
£} Operations

1@ sty
i. () write plan

grade

write plan

1) avvises o
1~ @ assists }

i@ belongs to] 4o poction
1@ has T o
e @mewets] ! 18 taughtoy [~

Figure 3: LIDA’s Model Editing Environment Interface

Functionality

The main functional features of the Model Editing Environment include:
e A display showing the candidate and actual model elements.

o Operations (e.g. “Declare an association between two classes”) needed for incorporating
model elements into a class diagram.

e A display showing the textual contexts in which the model elements appeared.

e An operation for automatically generating textual descriptions of model elements.
Main Interface Components
The main interface components of the Model Editing Environment are the following:

e Main menu, which contains functions for manipulating and customizing the information
displayed in the Model Editing Environment.

e Pop-up menus associated with the model elements displayed in the Model Editing
Environment, which contain commands for editing a model element, for displaying textual
context of model element, and for automatically generating a textual description of a model
element. :

e Lists of class, attribute, operation and role model elements, both candidate and actual.

e (lass diagram.

Related Research

There is an extensive literature discussing the relationship between the linguistic structure of the
requirements document and the model that is obtained from it, for example [9] — [12]. LIDA is
inspired by the observations in these research efforts, but differs from these efforts crucially.
These previous efforts are either purely methodological, or aim at automatic model extraction,
which is currently beyond the state of the art for serious (i.e., non-demo) software engineering
efforts. An interesting and ambitious example of this type of research is the COLOR-X system
[13], which aims at including a large lexicon to aid in semantic model validation and provides a
new modeling language specially developed for this purpose.

LIDA differs from these research efforts in the following key aspects:

» LIDA provides only state-of-the-art linguistic tools that perform extremely reliably with
broad coverage (part-of-speech tagging and morphological analysis).

= LIDA includes a robust and usable GUI.

» LIDA is compatible with UML and UML-based COTS graphical modeling taols. Itis
designed to be compatible with actual software engineering practice.

Perhaps the system that comes closest to LIDA is the Grammalizer system, which is sold by the
Dutch consulting group KISS, http://www.kiss.nl. Because it is a commercial product,
information about this system can only be obtained from marketing literature, but it appears to
use similar linguistic technology to LIDA (part-of-speech tagging and morphological
processing). However, it appears that Grammalizer can only be used in conjunction with the
KISS methodology, which includes mapping the natural language text to a set of predefined
KISS-concepts, which then become the model. In LIDA, we make no assumptions about what
sort of concepts will be found -- the analyst works with the result of LIDA's linguistic processing
to create a model. We have designed LIDA to be flexibly integratable with different approaches
to modeling through the use of UML-style models.

Tutorial:
Using LIDA to Assist Class Identification, Refinement and Validation

The following tutorial provides a methodology for class identification and elaboration, and a
scenario-based, hands-on experience with how LIDA [2a] helps with this process.

The Methodology

There are a number of ways in which LIDA can be used to support the object-oriented analysis
and design process, depending on where in the OOAD process the analyst is starting. These
tutorials cover two situations: 1) starting with a text domain description, operational concept
document, use cases, or other text system or task descriptions, and 2) starting with an existing
class model, and using LIDA to explain it in text form. For example, if an analyst is starting
with a text description of the concept of operation for a proposed system (in any text-based
format), LIDA can be used to assist the analyst in identifying potential objects, attributes and
methods, and elaborating on them based on the text description. On the other hand, if an analyst
wants to validate an existing class diagram by viewing the diagram in the form of a text
description, LIDA will translate the diagram into a text description that an analyst can use to
compare the current model with the intended model for the proposed system or domain. This
capability of going back and forth between text and graphical model during development of a
model can be very helpful, and minimizes errors before model complexity obscures error states.

Most text documents that describe system functions contain many more nouns, verbs, adverbs,
and adjectives than are useful in an OOAD effort. These words are necessary in prose and
conversation to fluently describe the manner in which a system is to be used. The sheer number
of words must be reduced to a subset that is directly applicable to the development of a system
using classes. Prose is typically filtered in a context of use. In other words, knowing how the
system is to be used helps the analyst identify which classes are relevant, and which classes are
not. Prior to attempting to identify classes, the analyst should already have prepared a set of use
cases or scenarios that represent the operational concept for the proposed system. The analyst
should have this information in mind prior to using our methodology. By having this knowledge
at hand, the analyst can make much more effective use of the capabilities of LIDA.

Hints regarding the identification of classes, their attributes, roles and methods will be included
in the tutorial; however, if the analyst is unfamiliar with object-oriented analysis and design, this
tutorial will be only minimally effective. LIDA is most effective in conjunction with a fully
developed OOAD lifecycle model that includes a process, notation, tools and usage heuristics.
Without a thorough education in OOAD, the user can expect only marginal results. Our
methodology is consistent with the Unified Software Development Process, and LIDA uses the
Unified Modeling Language (UML) as the preferred notation.

The full text and models used in these tutorials can be found in Appendix A. For questions about
specific LIDA functions, we recommend using the online help facility from within LIDA.

Part 1

Identifying Classes Starting from Domain Descriptions, Operations
Concepts, or Use Cases

The general flow of the class identification process is illustrated in Figure 1. Bearing the general
flow of activities in mind will help the user make sense (and better use) of the tutorial. While
this tutorial represents a single path through the methodology (one scenario) accomplished with
the help of LIDA, the user is encouraged to experiment with their own variations on the method.

IdentifyMark
——————=>{ Class Listfrom LIDA o i
Noun List
Unmark Phantoms,
Surrogates, Aliases, and
other "non-classes”

\

Convert Nouns
Incorrectly Identified as
Classes, to Attributes

[not finished}

[finished]

tdentifyMark
Attributes from LIDA
Adjective List

IdentifyMark
Methods and Roles from
LIDA Verb List
se the LIDA Modeler to
Add Attributes, Methods,
Roles and Hierarchies
Validate Model
Correctness Using Model
Explainer
Proceed to Model Class
Interaction

Figure 1. LIDA Class Identification & Modeling Process

W

Jlv

The goal of this method is to utilize existing text descriptions of a problem domain, and from
them, produce the initial class diagram with attributes, methods, and roles for export to an object-
oriented CASE tool.

1. Start LIDA by Double-clicking on the LIDA file icon labeled LIDA(.bat)
2. The following screen will appear (Figure 2):

Fle Edt View Fler Opmons Help
e Nouns C Adlectlves Verbs - All
[vasetorm - [pos | n'| type s

fi Unmark I

Figure 2 LIDA Main Screen

3. From the File menu, select Load Text
4. For our tutorial, we will be using a text file that has already been tagged by the LIDA
- tagger. This is to say that the software has already identified the appropriate parts of

speech in the document we will be processing. Figure 3 shows the Load Text dialog box.
Within this box, find the file Video Store.txt and select it so that it appears in the File
name: field. Click the Open button. (Alternatively, double-click the file name for the
same result.)

5. Figure 4 shows the LIDA main screen with the tagged Video_Store.txt file loaded.

11

Load Text... ﬂm

-~ Look jn: lE] sample_files _ v 3 -@J _E_fﬂ
f‘» ? Home_Heating_System.txt.tags £} Video_Store.txt

_E'J hs_student.tat [sa] Video_Store.txt.tags

5] Mushi.txt

: E_E] registrar. txt

:'z{ %regislrar.lxt.lida

#] registrar.txt.tags

T — [Taeen |

Figure 3. Load Text ... Dialog Box

The Video store receives tape requests and returned
tapes fron customers and new tapes from the Main
office. Whenever necessary the Video store sends
tape overdue notices to its customers. Tape :equesti

. [tape 14

.| pasetorm ll"os'l»“nfl type —‘- ~
| —

N

. |store

rsequest : : are taken care of by the store assistant., While

film N 5 treating these tape requests he uses information
- asslstant N 5 concerning films and tapes. He also uses and updar.e*
i the list of rentals. The store assistant also takes
-, |customer N §
rental N 4 care of tape returns. For this task the store

list N 4 assistant auain needs the information concerning

films and tapes as well as the list of rentals. Here

.- {care N 3

video N 2 too the list of rentals is updated.

The other activities are the subnission of rate
changes and the subnission of new tapes by the store|
managerent and the production of rental reports and
the sending of tape overdue notices by the store
aduinistration.
Film request is taken care of by the store
assistant, Whenever a customer requests & film, the
store assistant first checks whether there are still
— tapes, containing the requested film, available and
AT s et o - y——— - then he searches, if necessary, for the rental
model clement .- 1IP°SI n IW :] price. Next he checks whether this customer is late
‘ . with the return of othexr tapes. If so he may not
borrow the tape requested. If this is not the case,
Jhe records this rental by updating the rental list.
For this, the customer is asked for his eddress.

Figure 4. LIDA Main Screen with Text File Loaded

12

6.

8.

10.

11.

Notice in Figure 4 that the text file appears in the right-most window, and that the parts of
speech appear in the upper-left-most window, with the nouns displayed in the default
situation.

Most OOAD methods recommend the identification of candidate classes first, suggesting
that the most frequently occurring nouns are likely candidates. In order to arrange the
nouns in the order of occurrence, click on the "n" heading directly above the numbers of
nouns. This will automatically sort the nouns in ascending order according to their
frequency of occurrence in the document as shown in Figure 5. (Clicking again will
reverse the order to descending.)

@ Nouns (" Adjectives (" Verds -

|pos] n'|twe: -
1

i] base form:
- |tape

5. fslore

2o tassistant
request
film
customer
rental
Z.flist

2 "eare

L fretum
notice
video

ZZZ2Z22ZZZZZ
NNNWELEANAONO &

Figure 5. Sorted Nouns in Order of Occurrence

Examining the list of nouns, we find “tape” appearing 14 times in the document. Since
this is a video rental store, and tapes are what are rented, this seems like an ideal
candidate for the first class. - Click on the word “tape” m the list of nouns, and then click
the Class button.

LIDA highlights the word “tape” everywhere it occurs in the document. We recommend
identifying the set of candidate classes first in a brainstorming fashion, then removing
inappropriate classes and adding missing classes in subsequent passes.

The next most frequently occurring noun is “store”, followed by “assistant™, “request”,
and “customer”. We highlight all of these in turn, and mark them as possible classes (or
candidate classes).

The next word on the list is “ﬁlm” We suspect that “film” and “tape™ might be used to
refer the same object (since we know that most video stores don't rent photographic film).
In order to verify that this is the case, highlight the word “film”, and click on the Context
button. This results in the display of the context window as shown in Figure 6.

[context of ‘film’

se tape requests he uses information concerning films and tapes.
‘Bsistent again needs the information concerning films and tapes as well as the list of rentals.

Film request is taken care of by the store assistant
Vhenever a customer requests a film, the store assistant first checks whether there
there are still tapes, containing the requested film, available and then he searches, if necessary,

T

|»

Figure 6. Context Window

Notice that the Context function locates the word of interest, in this case “film”, in the
center of the window, with the rest of the sentence in which the word appears on either
side of the word. As we read through the context, although we notice that there is a
possible “containment” relationship indicated in the last sentence, we decide that this is
irrelevant to our analysis and that tape and film refer to the same concept, so we do not
mark “film” as a class. Ideally, we might mark “tape” and “film” as synonyms, however,
LIDA does not currently support this operation.

% Pl ES |
G Nouns: .~ Adjectives (" Verbs. C Al The Video receives - and returned
[oasetorm . pos| n'|twe ki Il tr.onL and new from the Main
fape N 14 Class office. Whenever necessary the Video sends
¢ [store N 8 Class B overdue B o i
Y. are taken care of by the . While
. Jrequest N § Class
) - N 5 o — treating v.he?e - he uses information
: assistant N 5 Class ‘ concerning films and . He also uses and updates|
£ |eustomer N 5 Class - ~{the list of - The -also takes
 Nist Noe S Jam needs the information concerning
N eare N 3 : films and - as well as the list of _ Here
video N 2 too the list of _ is updated,
: > Priases The other activities are the submission of rate
: ; i - - - changes and the submission of new - by the
L ohesse e 0 |n[typ¢ T l managenent end the production of rentel reports and
B o T the sending of - overdue - by the -
‘jadpinistration.
is taken care of bw
. Vhenever a _ a filn, the ||
first checks wvhether there are still]
— , containing the requested film, available and
B TR e S IS0 R Raes mar .1 |then he searches, if necessary, for the rental
| modoteloment .- v lposl 0 l‘VP’ 1A |price. Next he checks uhether this [N 1= 1ate
store 9 Class with the ot other - It so he may not
~notice 2 Class borrow the requested. If this is not the case,
. {return 2 Class he records r.hi- by updating the rental list.
- |tape - 14 Class For this, the is asked for his address.
- {request § Class i
. |customer § Class
. +{rental 4 Class -])

Figure 7. LIDA with Candidate Classes Marked

14

12.

13.

E‘Econlexl of ‘address’

IFor this, the customer is asked for his address.

The next noun in the list that looks like a good candidate is “rental”, since we know that
there is likely to be a rental transaction in the system, and that transactions are candidates
for classes. Highlight “rental” and mark it as a class. Similarly, we tentatively mark
“return”, “notice”, “address”, “report”, and “price” as candidate classes. Figure 7 shows
the appearance of the LIDA user interface at this point. Current model elements are
shown in the lower-left corner. NOTE: It is also possible to highlight and mark words as
model elements directly in the text window. This is very useful when giving the texta
final read before moving from one step to the next.

Next, review the list of model elements, and revise it according to your knowledge (and
your customer's knowledge) of the video rental problem domain. For example, we have
identified “address” as a class, but upon examining the context by highlighting “address™
and clicking the Context button, resulting in the display in Figure 8), it is apparent that
“address” is really an attribute of “customer” (because of the possessive pronoun “his”).

14.

15.

Figure 8. Context for "address"

To correctly mark “address” as an attribute, click on the Unmark button (“address”
should already be highlighted). This action will remove “address” from the list of model
elements, and unmark "address" in the main text. Next, using the scroll bar in the “Base
Form” window (upper left), locate “address”, and click on it. Click on the Attribute
button, and notice that “address” is now highlighted in cyan in the main text, and appears
again in the Model Element window as an attribute. The result is shown in Figure 9.
Examine the remainder of the list of model elements, and convert “price” to an attribute
as we did with “address”. Further, in thinking about the features we will be
implementing in the proposed system, we determine that “store” isn't a system class or
attribute (i.e., the video rental “store” doesn't play a real part in the system), and
“assistant” is an actor in our scenario, rather than a part of the “system” per se. Remove
both of these from the list of model elements. (Highlight each word individually, and
then click the Unmark button.) Later, we may want to have an abstract interface class
that equates to “assistant”, but that class will be created in the design phase.

Finally, before moving to the next operation, we notice that “return” is marked as a class.
Thinking about “return”, we realize that it has few methods or attributes that are not
associated with “rental”, so we remove it as a class, arid mark it as an attribute, possibly
of “rental” (using the same procedure as with “price”, etc). We may have to change this
later, but it works for now in the context of our knowledge of the scenario for returning a
rented video.

15

E_:ZLIDA 0.8.9 -- D:\lhida\ida089\lida089b\sampie_files\Video_Store.txt
File ' Edit. - View "Fiter. . Options Halp P . :) ! .
£ {® Nouns (" Adjectives (" Verbs (" Al _ The Video “ives |] and returned
k e foarmn = . - " - from and new from the Main
besoform - Iml n I'!DG "'1 _ office. Whenever necessary the Video sends
- [rental N 4 Class | overdue NI to ics
. [submission N 2 m are taken care of by the . Unhile
: ::21?:9 :ll g Class Role I treating these he uses information
i . concerning £ilms and . He also uses and updates
return N 2 Class ‘1 Unmark l the list of . ‘The also takes
M S . . care of . For this task the -
e A | . Stopword again needs the information concerning
7 factivity N 1 oo >y L filas and - as well as the list of _ Her
. [production N S el too the list of is updated. T
o report N 1 Class The other activities are the submission of rate
i ftask N : . changes and the subxission of new by the
- 9""” : N_ 1 £ NI management and the production of rental and
i e e = the sending of Il overdue JEEEN vy the
© [phrase . P [n l'!l” L [‘| administracion.
Fila is taken care of bw
. Vhenever o [N a filn, the
tirst checks whether there are stilll
, containing the requested film, aveilable and
then he searches, if necessary, for the rental
. Next he checks whether this is late
‘ — I e . , vith the ‘ of other . If 30 he may not
b e e - —————1.{ |borrov the requested. If this is not the case,
.| model clement e o Y -1 |he records this by updating the rental list.
+:{1ape 14 Class ‘f |For this, the is asked tor nis .
. }address 1 Aftribute
i:. jeustomer § Class
- lassistant § Class
c~{report 1 Class "
:{store 9 Class -
*{price 1 Class g
- return 2 Class <

Figure 9. "Address' Marked as an Attribute

16. Having completed our initial marking of classes using LIDA, we now turn to possible
attributes using tagged adjectives. First, click on the “Adjective” radio button underneath
the main menu at the top of the LIDA window. This results in a list of adjectives. Next,
click on the “n” above the number of occurrences of the adjectives, and the list will sort
in ascending order of occurrences. The window should now appear as in Figure 10.

16

- frental A3 | I overcue NN o its
~{overdus A 2 ; - are taken care of by the store assistemt. Uhile

kg?hv:r 2 g . Rale l treating these m ' he uses informetion .
. | Em— concerning films and . He also uses and updatesj
. [necessary A2 . Unmark l the list of . The store assistent elso tokes |
available A1 77 care ot . For this task the store

onreas

L r—— P, IR K 4 | borrow the requested. If this is not the case, { .
| inode) eleroent Pos]nl‘W ‘{he records this by updating the rental list, fi.-°
i |tape 14 Class ‘| Fox this, the is asked for his

: |address 1 Aftribute

‘. jeustomer 5 Class

“-{repott 1 Class

| price 1 Attribute

*. Jreturn 2 Atlribute

. jrental 4 Class R

-:|request 5 Class HE

E,';LIDA 0.8.9 -- D:\lida\lidaD89\lida083b\sample_files\¥ideo_Sto
Fip Edt View Fiter: Opfions - Help .- :
" Nouns @ Adjectives (™ Verbs (All]
[osssrorm~ Tpos] w Tome 1]

The Video store receives JIl end returned
) trox N =2t new from the Main
office. Whenever necessary the Video store sends

‘] 1assistant agein needs the information concerning X
| £1ns and as vell as the list of JENEMEE. Dexel
~{ too the list of is updated.
"] The other activities are the submission of rete
| changes and the submission of new |l by the storej -
| menagement and the proguction of rental NN end ||
=2 | the sending of Il ovezoue JNBEN by the store
“| adminiscration.
“| i1 JEGEER is texen cere of by the store
L assistent. Whenever a JENENEE N - t11x, the |-
| store assistent first checks whether there ere stillf |
‘ , containing the reguested film, evailsble and §
1 then he searches, if necessary, for the rental
{JI§l. Next he checks vhether this [N is 1ate
‘Jwith the ‘ of other JI- 1f s0 he mey not

Figure 10. Adjectives in Descending Order

17. As shown in Figure 10, this list is rather short, and not very rich in possible attributes.

18.

The only 2 possibilities on the list are "overdue", a possible attribute of "rental", and
available", a possible attribute of "tape". The other adjectives don't make sense as
attributes in our context. Next, highlight and mark each of the two words, "available"
and "overdue" as attributes.

Finally, we use our list of tagged verbs to help identify methods or operations associated
with the classes we have previously identified. Using the same procedure as with the
adjective list, click on the Verb radio button to display the tagged verbs, then click on the
"n" to display the verbs in descending order of occurrence. Identifying methods at this
point is much more difficult, and is typically done at a later iteration of the OOAD
lifecycle (during analysis & design). Nonetheless, we can examine the list for candidates
at this stage to help get as complete a class diagram as possible, early in the process. The
verbs in order are shown in Figure 11 (upper left sub-window).

17

[SiuDA 089 -

- D:\hida\lida089\lida089b\sample_hiles\Video_Store. txt !EI!ZI

L{" Nouns (" Adjectives. @ Verbs (Al — The Video stoxe receives [l and returned
e . I - from - and new frox the Main

: besoform _: - [Posl i l twe] - office, Whenever necessary the Video store sends

3 take v 3 to its _

_“{update v 3 are taken care of by the store assistant. While
“{send v 2 treating these [he uses information

v feoncerm v 2 concerning films and . He also uses and updates
faquest M 2 the list of . The store assistant also takes
ri;|use v 2 care of N . For this task the stoxe

o check v 2 assistant again needs the information concerning

- {weat v o1 tilns and [as vell as the list of JENENER. Hexe
:receive v 1 too the list of N is upcated.

record v 1 The other activities are the subnmission of rate

. |return v o . changes and the subxission of nev Il by the svore
ii{bomow v _1 — management and the production of rental [N ana
i it T — the sending of IR B by the stoxe

5 phr.” e B T RN e N adninistration.

{riln I is taxen care of by the store
assistant, Vhenever a _ - a film, the
store assistant first checks whether there are stil

, containing the requested filn, [N nd
then he searches, if necessary, for the rental
B. Next he checks vhether this [is late
L e uit.hr.he‘otocher-. If 50 he may not
B s PR T T"1.{ |borrow the requested. If this is not the case,
modelolement lPOS I"" “WO .1 |he records this by updating the rental list.
. Joverdue 2 Attribute |7 {ror this, the is asked for his
.- |1ape 14 Class :
- jaddress 1 Aftribute
i~ Javalilable 1 Aftribute .
Jcustomer § Class __J
- {repont 1 Class
Jprice 1 Attribute
" Jreturn 2 Aftribute -

Figure 11. Verbs in Descending Order

19. With the classes in mind, we examine the list of verbs in search of behaviors (operations
or methods) the classes might exhibit. We have tentatively identified six classes from the
text. Go to the Model Element window, and click on "gype", then on "n". This sorts the
Model Elements by type in descending order so that we can view the list of classes more
easily. Scrolling down to look at the resulting list of classes, we see that the first is
"tape". Looking through the list of verbs, find behaviors that the "tape" class might
exhibit. Using the context feature, we find that, according to the text, none of these verbs
represent behaviors that are applicable to the "tape" class. One verb, "update" is likely to
be a behavior exhibited by "tape", but not according to its use as described in the text.
Using a bit of extra knowledge, mark the "update” verb as an operation.

The next class is "notice". Scanning the list of verbs, we find a behavior that a "notice"
might exhibit. Mark "send" as an operation. We follow this same general procedure for
the remaining classes, making sure that any verbs marked as possible Operations are done
so in the context of a class behavior. This procedure results in the following verbs
marked as possible operations: "check", "request", "return”, "record" and "borrow". The
resulting LIDA window is shown in Figure 12. It is also critical, especially when
differentiating between methods and roles to use the context feature to view noun-verb

18

collocations. Figure 13 shows the use of context to examine the relationship between the
noun "notice" and the verb "send".

_~ The Video store receives and
1A tzon IR -n: nev from the Main

joffice. Whenever necessary the Video store
vo ics [NENEE.

' 3 Opé'ra oh

2 Operation b laze teken care of by the store essistant. Wnile

i concern 2 { treating these he uses information
request 2 Operation Jconcerning tilas and . He also uses and :
- juse 2 " ;] the list of . The store assistant also takes ||
& check 2 Operation cate of . For this task the store \
~ltreat {1 assistant again needs the information concerning

o [ecenve tilns and IR os well as the ust ot M. Eexe
{too the list of 5
The other activities are the submssion of rate E
changes and the subnission of nev [by the store]
4 managenent. and the production of rental R ava |
i i by the stoxe

Qperation

;- fretum
i "{borrow
“{contain

<L <L L LK

1
1
1
1
1
1

: adninistracion.
| 1Filn I is taken care of by the store

" | assistant. Vhenever a a tilm, the |:
store assistant first vhether thetre are stillj:
, containing the tiln, DN s i

] then he searches, if necessary, for the rental !
| B. Next he HESEE vnether whis I is late |

e pres —e— with the of other » If 30 he nay not

LTI e : the . It this is not the case,
miodel slement : 0t e this BB che rentel list.

- {send 2 Operation is asked for his .

. frequest 2 Operation

- |tape 14 Class

" {notice 2 Class

= Jreport 1 Class

;. |rental 4 Class

= leustomer § Class

* lavailable 1 Attribute -

gg context of 'notice’

Whenever necessary the Video store sends tape overdue notices to its customers.
= production of rental reports and the sending of tape overdue notices by the store administration.

=

Figure 13. Using Context to Examine Verb-Noun Collocation

20. While looking over the hlghhghted text, we notice that a phrase is apparent "overdue
notice", which may represent a sub-class, or special kind-of notice. To mark thisasa
class, chck on the Nouns radio button to recall the list of nouns. Click on the "notice”
base form, then click on the Phrases button to the right. A list of phases will appear that
contain the word "notice". Cool, eh? Select the phase "overdue notices", and click the

19

Class button. The phrase will then be marked as a class. The result of this operation is
shown in Figure 14. Notice that the first occurrence of the phrase "overdue notices" is
highlighted together in the text window.

E‘ LIDA 0.8.9 -- D:\hda\hdaDB3\hdal8Yb Stose.txt

ouns: (" Adjectives € Verbs All - The Video store receives [l and NI

e e T L tron [N end nev from the Main

- beseform - [pos[mtpe | office. Whenever necessary the Video store
assistant N 5 o ics [NNERENN.
i notice N 2 Cla.ss . are taken care of by the store assistant. While
i address N 1 Atribute treating these he uses information
L office N 1 concerning £ilms and . He also uses and

i, {customer N 5 Class - the list of . The store assistant also takes
list N 4 care of . For this task the store
e rate N 1 assistant again needs the information concerning
fprice N 1 Aftribute tilns and I es vell as the list of . Here
.+ |rental N 4 Class too the 1ist of NN is .

film N 5 The other activities are the submission of rate
= {main N1 . changes and the subwission of nev [l by the store
tape : N__14 Class s xanagement and the production of rental [and

che JEENEN o NN NN MR by che score

d overdue notices

B overdue notices by the store administratio

aduinistration.
riln B is teken cace of by the store
assistant. Whenever a a film, the
store assistant first whether there are stillf
, containing the film, and
then he searches, if necessary, for the rental
. Next he vhether this JEN is late

i - with the ‘ of other . If so he may not

S—— oR P TaRET s I " - If this is not the case,
- [modelctement - . jpos| nowe R ip. this by SRR the rentsl list.
- |send 2 Operation | | |For this, the is asked for his .
" Joverdue 2 Altribute
. {tape 14 Class :
i~ |address 1 Atribute [
= :| available 1 Attribute -
:|overdue notices 1 Class
:"lupdate 3 Operation |-
;" [check 2 Operation |«

Figure 14. Using a Phrase as a Class.

21. Finally, examine the verb list to see if there are any possible roles that one class will play
with respect to another class. Notice that a customer can "receive" an overdue notice and
"receive" a tape that they have rented, so select "receive", and tentatively mark it as a role
using the Role button. -

22. Now that we have a set of initial classes, attributes, and operations, we are ready to use
them to construct our model. On the File menu, select the Edit Model ... option. This
will execute the LIDA Modeler, as shown'in Figure 15. Notice that there are four sub-
windows on the left side of the Modeler window, labeled Classes, Attributes, Operations,
and Roles. Each sub-window contains those model elements previously identified using
LIDA. '

- Using Modeler, we will now associate these model elements into a preliminary class
model. This window will appear in addition to the LIDA main window, and the two

20

windows may be utilized alternately by clicking on the window currently in the
background, in order to bring it to the front.

§F= LIDA Modeler 0.4.0 » = {0] x|

View Preferenc I

| &-Classes
2 B assistant
----- customer
----- notice
averaue notices
----- renta)

Ay

‘| E-Attributes _ customer
address - HEEADE
---- available
----- overdue
~~~~~ price -
- Ug) return

- E-Operations

: ; borrow

fo check

o recors

; request T
return =

| E-Roles
’ L) receive

Figure 15. Initial LIDA Modeler Window

23. Starting with the "customer" class (shown above in Figure 15), we need to assign
attributes and operations to the class. NOTE: The context of the class in the text is
always available, automatically, via LIDA, if a "memory aid" is needed to assist with any
assignment decisions.

An attribute of customer that we are certain of is "address". Assign "address” as an
attribute of "customer" by clicking on the "attribute" section of the "customer" class
symbol in the main model display window. This is the center of the 3 rectangular widget

areas as shown in Figure 16 below. Clicking on this box results in the display of the
Attributes dialog box shown in Figure 17,

Select the "address" attribute from the list, and click on OK to complete the assignment.




24. Next, click on the "operation" section of the "customer" class symbol in the main model

display window. This is the bottom portion of the class symbol as indicated in Figure 18,
below.

------ overaue notces :
‘‘‘‘‘‘ § rental :J
| E-Attributes customer
| | address : H :
available
overdue { -
price

e return

Figure 16. Attribute Box

ute Editing

overdue -
avallable . -
price .

|Retevant
5 address -

Figure 17. Attribute Editing Dialog Box

22



= Attributes customer
-Gy address :
; avaiiable
o averdue
| price ,
QY return

E-Operations

' fon borrow
b check
b record
b request
o return

Figure 18. Operation Section of Class Symbol

Clicking on this part of the symbol results in the display of the "Operation Editing" dialog box.
From this box, we find two operations that belong to the "customer" class, "borrow", and
"return". Selecting first one, and repeating the operation for the other adds both operations to the
"customer” class symbol in our model. The resulting model screen is shown in Figure 19.

) &-Classes

(@ overdue notices
£ varia

customer -

I AU mnues
: address |

‘ redﬁes@ '
..... @ price o E return -

Y return

RGP CHECH
() recory
o~

Figure 19. Customer Class with Attributes and Operations

25. Having selected the attributes and operations of the "customer” class from the available
list, we can now add those not in the text (if we have sufficient information about the
domain to do s0), and we can associated the customer class with other classes in our
model. For example, we know that in order to send a customer a late notice, we will need
their name, and if we want to telephone them, we will need their phone number. To add
attributes not in the text,-simply click on the "..." blank in the attribute box of the class.
LIDA will display the Attribute Editing dialog box as shown in Figure 20. Enter the
name of the attribute, in this case "phone", and click the "OK" button. While the
attribute will not be added to the base text in LIDA, it will be added to the model.




Continue this activity until the class is as complete as possible, given current domain
knowledge.

26. The next step is to decide the nature of associates between the customer class and other
classes, given our knowledge of the scenarios under which the system will be used.
LIDA makes this an easy process as well. First, with the cursor over the title of the
"customer” class, click the right mouse button. This will display the menu shown in
Figure 21. Left click on "Add Association". LIDA will then display a list of classes as
shown in Figure 22. We know that customer and rental are associated, since customers
are naturally engaged in rental transactions. Select "rental” from the list, and click on the
"QK" button. Figure 23 shows the resulting graphical display of the "customer” class
associated with the "rental" class. However, we are still not finished editing the
association, since we have not specified the multiplicity of the relationship. As shown in
Figure 23, the default multiplicity is *, or many-to-many. From our knowledge of renting
videos, and from the base text, we can determine that this is incorrect, and that we must
change the multiplicity of the customer to 1:1 or, "one-and-only-one", but that one
customer can rent many videos. To do this, right click on the lower * multiplicity symbol
associated with "customer”. This produces a menu from which we select the "1",
indicating only one customer per association. The result is shown in Figure 24.

[ Atribute Editing

Please select the attribute to add to ‘customer’...

Newphone

: ovardus - o
IRelevant/avallable -~
3 price -

;: Other |retum

<" Cancel

Figure 20. Adding a New Attribute, Not in the Base Text

24



‘ 1 &-Classes

--@ assistant

(8 customer

(B notice .
@ overduenotices |

| E-Attributes

: @Y address

-y available

--@) name
_Qoverdue

perations

(@ borrow
(@ check
(@) record
----- @ request

| =-Roles
: L receive

Figure 21. Class Option Menu .

i R23 Association E ditin

Figure 22. Association Editing Dialog Box

To validate that the model of the "customer” class is as we intended it to be, it's possible to
describe the class in English using the LIDA Describe feature. To use this feature, simply click

25




on the title of the class using the right mouse button, and click on the Describe option at the
bottom of the menu (Figure 21). This results in the display of an English language explanation

27.

28.

of the class, generated by LIDA. The "customer" class is described in Figure 25.

1L|DA Modelel 0.4.2b
' ‘ Preferences Help

Modol Vldeo“ Storo temp L

| & Classes

: (@ assistant
----- ® custorner
---- ® notice e
@ overdue notices v}

5 Eustomer
| =-Attributes laddress -
: @) address Rl name pental

@) available i phone
e name ‘::,“ : .: - ) __/”'*_— @

PQoverdue ]

, request
e return

E-Operations

: --@ borrow
: (@ theck
- record i
| i@®request =~

Varois
| -Qreceive

Figure 23. Association between 2 Classes

Also, notice that the right-button menu contains a number of other options that duplicate
the methods described in this tutorial, and are available as alternatives that may be more
convenient for the user.

To continue with model development, associate the remaining classes with their
operatlons and attributes by clicking on the class name in the Classes window, and then
either using the right-button menu or the attribute and operation areas in the class icon as
we did with the "customer” class. When all of the word lists are used, and any additional
attributes and operations have been added that are clearly needed and well understood by
the analyst, proceed to build the associations between classes as described in Step 26.
Most of the identification of additional classes, attributes, and operations will be
accomplished in cooperating with users, customers and other domain experts. Now, the
initial class model is finished.

To continue iterative refinement of the class model, and the development of associated
models using UML notation, the basic class model should be exported to a more feature-
rich diagramming tools. LIDA supports the export of models from LIDA to Visio™, a

diagramming tool that supports the UML notation. Import of models from Visio to LIDA
is also supported.

26



To export a model from LIDA to Visio™, follow the instructions in the LIDA User's
Guide, LIDA Integration with Visio™, Version 0.4.2 [8]. The Visio model exported from
the finished LIDA model in this tutorial is shown in Appendix B.

i3 notice
(@ overdue notices
F@rental

customer
1-Attributes address
@Y address name - Lfental
- @) available phone =
..... @ name L "1 |
Qoverdve 4] request
B — return .
1-Operations )
''''' ® borrow
@) check

Figure 24. Association with Correct Multiplicity Values

@LIDA Modeler -- Description »

Descfiption of "cl.istomer'.'

A customer is a top level class. A customer has 3 proper attributes
(address, name and phone). A customer has 2 proper operations
(request and refurn). There are no subtypes of customer.

A customer has zZero or more rentals.

Lt

Figure 25. Text Description of the Customer Class

27



Part 2

Using LIDA to Explain and Assist in Validating an Existing Class
Model

This part of the tutorial guides the user through the task of examining an existing class diagram
using the import and explanation capabilities of LIDA. An analyst might want to use this
capability of LIDA to closely examine, interpret, understand, or validate a complex model that is
otherwise difficult to understand on it's face. The model we use for the tutorial is small, but
more complex than the model utilized in the previous tutorial scenario.

1. The tutorial starts, as shown in Figure 26, with a model that has been developed or
‘imported to Visio. This model is of an Integrated Employee Training plan development
system that has been described in terms of a set of classes, with attributes and methods.
The basic idea is that an employee will develop a training plan based upon a set of
required skills and employee skill deficiencies, and schedule classes in order to
implement the training plan.

2. From the LIDA menu in Visio, click on the Export to LIDA option. You will see the
warning message shown in Figure 27. Make sure you read it to see the notational
features that are actually exported to LIDA. When you have finished reading the warning
message, click the OK button to dismiss the dialog box.

3. Next, a dialog box is displayed that gives the analyst options for dealing with
parameterized classes and class utilities. If there are none of these in the model you are
importing (as in this case), or if they are not important to maintain for validation
purposes, click on the Do Not Export radio buttons for each class, then click the apply
button. The dialog box is shown in Figure 28.

28



Visio Ploleulor\al hda uapoit from visio.vsd.Page-1

1"_r_—|ma- W e 'm eaa..tn!awa @

‘;l‘ |;.l|n|'.n|;n -i.l.l.l.nl.nFnd.nP.nhnf‘lnln.P-nl.|.an|IL.P.nl.ul'ul .nl:]

ve_Ta [ S
-com m sm-g a3

50 Camgory GWIng
omq_mulu:llnvlf,
™" e Cort: Kuae [l
L Y]
RCoatia Cormet: iy
| pCoA | n«evm g,
| ey oouno
|  par_Cotrre )
: jeGrarcs_tvQ I
) ~ 8
|
i O | Rewnaces &
‘ [- 3 -3 BRposes
Oapkive_Coutse
Pl o0 =X MTIT]
NT_Danak “SRisg
AT Userts :Suing
oweg
y ML Name - StIng :
d P it e OR1NQ
eacea Hoss : N *
_Hosts :Nomarie % n;_wl:.‘?ug i
b [PETS, Useild:S8i:
w-_u_m,:: s Daw; _&!:ﬂm’
OeNE_BND COINQ 0 ~

R k-1
Code Sk
ot £ Do

Bepioee_t8ilt

XX
i Con S 1hg
02 of Wt i ; D

XK IR TN

| Eorlatlon LiDA Mdl -

Figure 27. Visio Export Warning

29




Exportation As LIDA Model [ x|

- Exportation Configuration

427 Povametrized Classes — + [ Class Utites ———————
| Export as simple dasses Expart as sirple classes
1 6 ot B oonseom™

Figure 28. Exportation Configuration Dialog Box

4. Next, the exporter will display a dialog box asking for a name for the LIDA model being
exported as displayed in Figure 29. Type in "trainingplan", and click the OK button.
There will be an additional dialog box indicating that model export has been completed.
Dismiss this box by clicking the OK button as well. You may now exit from Visio, since
the model has been exported into a LIDA file. '

€ xpoitation As LIDA Modet [X]

name of thuu pdel for mupwunnn. than pns: thnOK button " -

Figure 29. Naming the Exported Model

5. IfLIDA is not already running, start it by double-clicking on the LIDA file icon labeled
LIDA(.bat). ’

6. Select Load Model from the LIDA file menu, and select "training plan.lida" from the
resulting "Load Model ..." dialog box as shown in Figure 30, and press the Open button.

30



Home_Heating_System.kxl.laﬁs i testvideo.lida .

}&] hs_student.txt

1E) Mush.txt %] Video_Store.tut
i '_ tegistrar.txt ﬂVideo_Slore.lxt.tags
|l registrar.tetida ] Video_Store_temp.tatlida

Figure 30. Load Model... Dialog Box

. When the model has loaded (mouse cursor has reverted to an arrow), click on the Edit

Model ... option on the LIDA file menu. This will start the LIDA Modeler.

. Notice that in Figure 31, the Classes, Attributes, Operations, and Roles have been loaded

from the exported Visio model. Take a moment to scroll through the all of the lists and
view the model components that are available for review.

31



9.

10.

EdjLIDA Modeler 0.4.2b

FllB View' Preferences Help . ;
L o Model: training plan
=-Classes -
@ Class >
(@ Employee d
----- @ Employee_Course
,.4_..Q_Em_e'?ze9_,??!9'!_.‘.n__‘_.__;:J
la "”At‘tribu't'é‘sm R :‘El

@) Actual_Cost
------ @) Actual_Hours

- @ f&ttend Date —r_]
-
=

| =-Operations

----- ® Add_Course

----- ® Add_Empl_Course
----- ® Add_Empl_Skill
----- ® Add_Media

E-Roles
~~~~~ @ Contains
~~~~~ @ Creates
@ Maps 4
----- @ References ~]

Figure 31. Loaded-Modél Elements

In the list of classes in the "Classes" window, double click on the class named "Class".
The result of this action is illustrated in Figure 32. Notice that the "Class", "Skill_Map",
"Employee_Course", and "Media" classes are displayed in the working window. NOTE:
It may be a good idea to use the mouse cursor to grab the lower-right hand corner of the
Modeler window and expand the window to better view the items displayed therein.
Examine the various classes, attributes, operations and roles for inconsistencies and
ambiguities, as well as for missing elements. Using LIDA, you may decide that an
English language description of a particular class would be useful in this process. Right-
click on the name of the class of interest (in this example, "Employee_Course"), and
select Describe from the resulting menu by clicking the option with the left mouse
button. The resulting description is illustrated in Figure 33.

32



[E4LIDA Modeler 0.4.2b

.| & Classes

@ Class

- Employee

(& Employee_Course

----- ® Employee_Skill
® P

Is o b mes e

----- € Actual_Cost
@) Actual_Hours
- ) Attend_Date
----- @ BEMS_ID

E]Operations e

----- ® Add_Course
--{@ Add_Empl_Course
----- @ Add_Empl_Skili

----- @ Add_Media
-8y Add_Skill
Q Approve_ITP

ily

@ Media

@) Budget_Number

Class . -

Coutse_Code ..

Course_Titla -
Course_Media:
Coursi_Avaliabllity.
Course: Category
Course_Duration
Course_Cost’ " -
Coutse_Vendor:

Course_Contact
Course_Description)

A0 Gourse .+
Delsfe_Course: "
Update_Course - -

Course_Code

Relate_Skills
Relate_Remaove

Employee_Course
BEMS_ID
Course_Code
Course_Priority
Request_Date
Attend_Date
Actual_Hours [ =g
Actual_Cost
Date_of_last_update

1.1
0.n References

Add_Empl_Course
Delete_Emp!_Course

Media
Course_Media
Media_Description|

----- @ Contains 0.ni.. >
-G} Creates Contains |Add_Media
) Maps Delete_Media
-{§) References Update_Media
() Requests
Figure 32. Imported Model with '"Class'" Displayed
:;?,LIDA Modeler -- Descrnption

o]

more fTPS.

Description of "Employee Course”

An Employee Course [s a top level class. An Employee Course has 8 proper
attributes (BEMS 1D, Cowrse Code, Course Priorty, Request Date, Attend Date,
Actual Hours, Actual Cost and Date of fast update). An Employee Course has 2
proper operations (Add Empl Course and Defete Empi Course). There are na
subtypes of Employee Course.

An Employee Course References zero or more Clases and Requests zero or

33




Figure 33. LIDA Text Description of Employee_Course Class

11. This process continues until the analyst is satisfied that all classes are properly defined,
with appropriate attributes, operations, associations, roles, and multiplicity constraints.

This tutorial has demonstrated two ways in which LIDA can be used to assist in developing and
validating class models for object-oriented analysis and design efforts. The reader is encouraged
to experiment with extensions to the scenarios outlined in these tutorials, and discover as yet
untried ways of further utilizing the capabilities provided by LIDA and the LIDA Modeler.

34



References

[1] Bellin, David, Simone, Susan Suchman, and Booch, Grady (1997) The CRC Card Book
(Addison-Wesley Object Technology Series), New York:Addison-Wesley, ISBN:
0201895358.

[2] Booch, Grady, Jacobson, Ivar, and Rumbaugh, James (1998) The Unified Modeling
Language User Guide (The Addison-Wesley Object Technology Series), Addison-Wesley,
ISBN: 0201571684.

[2a] CoGenTex, Inc. (1999) LIDA User Guide. CoGenTex Technical Report. Ithaca, NY.

[3] Booch, Grady (1994) Object-Oriented Analysis and Design With Applications (Addison-
Wesley Object Technology Series), New York:Addison-Wesley, ISBN: 0805353402.

[4] Peter Coad, Edward Yourdon (1991) Object-Oriented Analysis (Yourdon Press Computing
Series), New York:Yourdon Press; ISBN: 0136299814.

[5] Jacobson, Ivar (1994) Object-Oriented Sofiware Engineering : A Use Case Driven Approach
(Addison-Wesley Object Technology Series), New York:Addison-Wesley, ISBN:
0201544350.

[6] Odell, James J. and Fowler, Martin (1998) Advanced Object-Oriented Analysis and Design
Using UML (SIGS Reference Library , No 12), SIGS Books & Multimedia; ISBN:
052164819X.

[7] Schneider, Geri, Winters, Jason P., and Jacobson, Ivar (1998) Applying Use Cases : A
Practical Guide (Addison-Wesley Object Technology Series) New York:Addison-Wesley
_Pub Co; ISBN: 0201309815.

[8] CoGenTex, Inc. (1999) LIDA Integration with Visio™. CoGenTex Technical Report. Ithaca,
NY.

[9] Chen, P.P-S. (1983) English Sentence Structure and Entity-Relationship Diagrams.
Information Systems, 29. ‘

[10] Kristen, G. (1994) Object Orientation: The KISS-method: From Information Architecture to
Information System. Addison-Wesley.

[11] Tséng, F.S.C., Chen A.L.P., and Yang, W-P. (1992) On Mapping Natural Language
Constructs into Relational Algebra through E-R Representation. Data and Knowledge
Engineering, 9. ‘ :

35




[12] Rolland, G. and Proix, C. (1992) A Natural Language Approach to for Requirements
Engineering. In P. Loucopoulos, ed., Proceedings of the 4™ International Confernece on
Advanced Information Systems Engineering. Springer-Verlag, Manchester.

[13] Burg, J.F.M. and van de Riet, R.P. (1996) Analyzing Informal Requirements Specifications:
A First Step towards Conceptual Modeling. In: Proceedings of the 2" International Workshop
on Applications of Natural Language to Information Systems, Amsterdam, The Netherlands. I0S
Press.

36



Appendix A - Sample Tutorial Materials

Video Store Operational Concept

The Video store receives tape requests and returned tapes from customers and new tapes from
the Main office. Whenever necessary the Video store sends tape overdue notices to its customers.
Tape requests are taken care of by the store assistant. While treating these tape requests he uses
information concerning films and tapes. He also uses and updates the list of rentals. The store
assistant also takes care of tape returns. For this task the store assistant again needs the
information concerning films and tapes as well as the list of rentals. Here too the list of rentals is
updated.

The other activities are the submission of rate changes and the submission of new tapes by the
store management and the production of rental reports and the sending of tape overdue notices
by the store administration.

Film request is taken care of by the store assistant. Whenever a customer requests a film, the
store assistant first checks whether there are still tapes, containing the requested film, available
and then he searches, if necessary, for the rental price. Next he checks whether this customer is
late with the return of other tapes. If so he may not borrow the tape requested. If this is not the
case, he records this rental by updating the rental list. For this, the customer is asked for his
address.

37




LIDA Model Imported to Visio™

assistant

+name : void

+send()
+check()

+request()

tape
+price : void
L]
1
customer
rental .
+address : void
+title : void +name : void
+price : void +phone : void
+record() +request()
+return()
* | receive
notice

*

report

+title : void

+send()

overdue notices

38




Visio™ Model Imported to LIDA

Class

#Course_Code : string
+Course_Title : String
+Course_Media: String
+Course_Availabilty : String
+Course_Category : String
+Course_Duration : Numeric

Maps | 0..n

Skill_Map

kill_Code : String
Course_Code : String
+Relate_Skills()
+Relate_Remove()

0..n | Maps

1.1

Skill

#Skill_Code : String
+Skill_Description : String
+Skill_Category : String
+Skill_Sub_Category : String

+Add_Skill()
+Delete_Skill()
+Update_Skill()
+Print_Skill()

1..1 | References

0.n

Employee_Skill

BEMS_ID : String
Skill_Code : String
-Date_of_last_update : Date

+Add_Empl_Skill()

+Delete_ Empl_Skill()

1n

Media

{#Course_Media : String

1.1 +Course_Cost : Numeric on

+Course_Vendor : String
+Course_Contact : String
+Course_Description : String
+Add_Course()
+Delete_Course()
+Update_Course()
+Search_By()
+Print_Course()

1.1

0..n | References

Employee_Course

BEMS_ID : String
Course_Code : String
+Course_Priorty : String
+Request_Date : Date
+Attend_Date : Date
+Actual_Hours : Numernc
+Actual_Cost : Numerc
+Date_of last_update : Date
+Add_Empl_Course()
+Delete_Empl_Course()

0..n | Requests

1.1

ITP

HBEMS_ID : String
+Mgmt_Review_Status : String
+Exec_Career_Status : String
+TeamLead_Career_Status : String
-Multi_Career_Status : String
+Interest_Organization : String
+interest_Department : String
+Review_Date : Date
+Submit_Date : Date
+Date_of_last_update : Date

0..1

Contains

Creates

+Media_Description : String
+Add_Media()
+Delete_Media()
l+Update_Media(}

Employee

HBEMS_ID : String
HNT_Domain : String
[{+NT_Userid : String

H+SSN : String

(+Last_Narne : String
+First_Name : String
+Middle_lInitial : String
+Mait_Stop : String
+ETS_Userid : String
+Employee_Pay_Code : String
[+Budget_Number : String
+Qrganization_Number : String

1.1

+Create_ITP()
I+Review_ITP()
+Approve_|TP()
+Delete_{TP()
+Print_ITP()

39

+Employee_Email_Address : String
+Supervisor_Email_Address : String
+Supervisor_Last_Name : String
+Supervisor_First_Name : String
+Supervisor_Middle_lnitial : String
+HR-Rep_Last_Name : String
+HR-Rep_First_Name : String
+HR-Rep_Middle_nitial : String
(+Job_Number : String
H+Skill_Mgmt_Code : String
-Date_of last_update : Date

+Create_Employee()
L+Delete_Employee()
+Update_Employee()
+Report_Employee_Info()




MISSION
OF
AFRL/INFORMATION DIRECTORATE (IF)

The advancement and application of information systems science and
technology for aerospace command and control and its transition to air,
space, and ground systems to meet customer needs in the areas of Global
Awareness, Dynamic Planning and Execution, and Global Information
Exchange is the focus of this AFRL organization. The directorate’s areas
of investigation include a broad spectrum of information and fusion,
communication, collaborative environment and modeling and simulation,

defensive information warfare, and intelligent information systems

technologies.




